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One-Dimens iona l  Disorder  in the Structure of Sod ium 2-Oxocaprylate*  
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Sodium 2-oxocaprylate gives a pattern of sharp and diffuse X-ray reflexions. The reflexions with 
h +/c +l even are sharp and those with h +k +l odd are diffuse; further the diffusion of intensity 
takes place along the a* reciprocal axis, thereby suggesting one-dimensional disorder. An expression 
for the diffracted intensities from the crystal as a function of the probability of occurrence of the 
fault has been derived on the postulate that the fault consists in the appearance of any layer of 
molecules as a twin on (001) with (100) as the composition plane, and assuming interaction among 
the neighbouring layers only. 

I n t r o d u c t i o n  

The crystal structure of sodium 2-oxocaprylate is 
described in the preceding paper (Tavale, Pant & 
Biswas, 1964). The oscillation and Weissenberg photo- 
graphs about the c axis show a pattern of sharp and 
diffuse spots as shown in Fig. 1 and Fig. 2 respectively. 
I t  is seen that  the reflexions with h + k + l  even are 
sharp, and those with h +/c + 1 odd are diffuse. Fur- 
ther, the diffusion of intensity takes place along the 
a* reciprocal axis, thereby suggesting it to be a case 
of one-dimensional disorder. Examples of such dis- 
order are given by Dornberger-Schiff (1956) and Woos- 
ter (1962). This paper describes the type of disorder in 
the crystal of sodium 2-oxocaprylate and presents the 
results of a calculation of diffracted intensities, based 
on the postulated disorder and assuming interaction 
among the neighbouring layers only. The method of 
calculation is similar to that  of Wilson (1942) and of 
Jagodzinski (i949). 

T h e  d i s o r d e r  p h e n o m e n o n  

As shown in the preceding paper, this structure be- 
longs to the space group Pbcn, which has the following 
eight equivalent positions: 

(x,y,z); (½-x, ½+y,z); (x,~,½+z); 
(½-x, ½-Y, ½+z) A1 

-(x,y,z); -(½-x, ½+y,z); -(x,~, ½+z); 
-(½-x, ½-y, ½+z) B~ 

Each equivalent position corresponds to one mole- 
cule, which is the asymmetric unit in this case. The 
four molecules marked A1 form the repeat unit of one 
layer of molecules, and the other four molecules 
marked B~ and related to A~ by a centre of inversion 
form the repeat unit of the neighbouring layer. Only 
van der Waals bonds operate between the layers and 
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there is a certain probability c~ that  during crystal 
growth a mistake occurs in the stacking of the layers. 
The calculation of diffracted intensities in the next 
section shows that  the observed diffraction pattern 
can be explained if it is postulated that  the mistake 
consists in the appearance of any layer as a twin on 
(001) with (100) as the composition plane. Let us call 
the layers which appear as the twins of A1 and B1, 
As and Be, respectively. The four equivalent positions, 
corresponding to A2 and B2 would be as follows: 

(x, y, 5); (½-x, ½+y, ~); (x,[¢, - ½ - z ) ;  
(½-x, ½-y, - ½ - z )  As 

-(x,y,~); -(½-x, ½+y,~); -(x,~, -½-z); 
-(½-x, ½-y, -½-z) Be 

In the disordered structure, there are thus four 
types of unit cell possible, namely A1B1, A2B,, A1B2 
and A2B2. Using the notation of Dornberger-Schiff 
(1956), the a operation connecting the pth layer to 
the ( p + l ) t h  layer is either a centre of inversion (A. 
to B1 and A2 to B2) or body-centring (A1 to B2 and 
As to B1), and the a operation connecting the pth 
layer to the (p+2)th  layer is either identity (A1 to 
A1 and B1 to B1) or reflexion on the (001) plane 
(A1 to As and B1 to Be). 

The Fourier transforms F1, F2, Fa and Fa at the 
reciprocal point (h+w, k,/), where h, k, 1 are integers 
and h+k+l  is odd, of the unit cells A1B1, A2B1, 
A1B2 and A2B2 respectively are given by the following 
formulae : 

.FI=A sin ½~w+B cos ½~w, (1) 

Fd=A sin ½ ~ w - B  cos ½~w , (2) 

F2= (A --iB) sin ½~w (3) 

F3 = (A + iB) sin ½~w , (4) 
where 

A =  - 8  sin 2~{hx + co(x- ¼)}. cos 2~ky. cos 2~lz 
for 1 even, and 

- 8 cos 2~{hx+ og(x- ~;)}. sin 2~ky. cos 2~lz 
for 1 odd; (5) 
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Fig. 1. 10 ° oscil lat ion p h o t o g r a p h ;  c: oscil lat ion axis ;  
Cu K a  rad ia t ion ;  34 kV, 20 m A ;  exposure  9 hr. 
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Fig. 2. F i r s t  l ayer  Weissenberg  pho tog raph  ; c: oscil lat ion axis ;  
Cu K s  radia t ion ,  34 kV, 20 m A ;  exposure  9 hr. 

[To face p. 219 



220 

B =  -- 8 sin 2z{hx+ ~o(x- ¼)}. cos 2~ky. sin 2~lz 
for 1 even, and 

- 8 cos 2~{hx+ w(x -  ¼)}. sin 2~ky. sin 2zdz 
for l o d d .  (6) 

For co an odd integer, i.e. for (w+h)+k+l even, 

[F~I~=[F@2=A ~', and ]F~.]2=]FsI~=Ae+B ~, (7) 

and for w an even integer, i.e. for ( o ~ + h ) + k + / o d d ,  

IF~I~- -1~412=B~, and IF~lm- -I~lm--0. (S) 

O N E - D I M E N S I O N A L  D I S O R D E R  IN SODIUM 2 - O X O C A P R Y L A T E  

The  in tens i ty  f o r m u l a  

I t  may  be assumed tha t  a structure starting A1B1 
A1B1... has a tendency to continue thus, but at  
each added layer there is a probabili ty a of a fault 
and the sequence continuing A2B2AeBe... till another 
mistake changes the sequence back to A1B1A1B1... 

Let the i th layer be of the A~ type. The probabili ty 
of the ( i+  1)th layer being B1 is then ( 1 - a ) ,  and of its 
being B~. is a. Calling layers of the type A~, B~ alike 
and Ag, B~ alike, but A~, B~ unlike Ae, B2, we find tha t  
the probabil i ty of the ( i+m) th  layer being like the 
(i + m - 1 ) t h  layer is ( 1 -  a), and the probabili ty of the 
(i + m)th layer being unlike the (i + m - 1)th layer is a. 

Therefore, if P~  is the probabili ty of the ( i+m) th  
layer and the i th layer being alike, we get 

Pm= (1 - a)Pm-~ + a(1 -Pm-~) • 

Solving this difference equation, we get 

P m = ½ + ½ ( 1 - 2 a )  m . 

If the i th  layer is A~, the (i+2m)th layer will be 
either A~ or A2 while the (i+2m+l)th layer will be 
either B~ or B~.; and the probabili ty of the (i + 2m)th 
layer being A~ is ½+½(1-2c¢)2% and of its being Az 
is ½ - ½ ( 1 - 2 a ) ~ .  Similarly, the probabili ty of the 
(i+2m+l)th layer being Bx is ½+½(1-2a)2~+~, and 
of its being B2 is ~ ~ 2c~) 2~+1. - ~ ( 1 -  The probabili ty of 
the ( i + l ) t h  layer being B~ is (1-c~) and of its being 

Let us call the unit  cell, consisting of the repeat 
units of i th and ( i + l ) t h  layers, the j t h  unit  cell. In 
general, the ( j + m ) t h  unit  cell will consist of the 
repeat units of ( i+2m) th  and ( i + 2 m + l ) t h  layers. 
The probability of the jth unit cell being A~B~ is 
( 1 -  c~), and of its being A~B~. is a. Further,  

the probabili ty of the ( j + m ) t h  unit cell being A~BI 
-- + i l  2a2m i -~ l - -2a)  2m+~}= -{½ ~( - ) }{~.+~( a~ ( s a y )  

the probabili ty of the ( j + m ) t h  unit  cell being AeB~ 
= {½-- ½(I -- 2 a)~m}(½ + ½(I -- 2o~)2m+~} = a2,  

the probabili ty of the ( j + m ) t h  unit cell being AIB2 
- - f~+  ~1 -(~ ~-2~)~}{½-~(1-2~)~m+~}-~,  

and the probabili ty of the (j + m)th unit cell being A~.B~. 
= {½-- ½(I -- 20¢)2m}{½ - ½(1 -- 2a)2m+~} = a4. 

I t  can similarly be shown tha t  if the i th layer is 
A2, the probabilities of the ( j + m ) t h  unit  cell being 
A1B1, A2B1, A1B2 and A2B2 would be a4, a3, a2 and 
al  respectively, and those of the j t h  unit  cell being 
A2B~. and A2B1 would be (1-c~) and c, respectively. 
Hence Jm, the mean value of FjF*+m, as defined by  
Wilson (1942) is given by 

Jm= ½{(1- a)F1 + aft} {F* al + P*a~+ F* a~+ F* ~,} 
+ ½{(1- ~)F4+ ~F~} {F*~, + F * ~ +  F * ~ +  P* ~1}, 

(9)  

where $1, F~, F3 and F4 are defined in the previous 
section. I t  can easily be shown after substituting the 
values of as and Fs in the above expression tha t  the 
same result will be obtained if the i th layer is assumed 
to be of the B type (B1 and Be) instead of the A type. 
In the case of one-dimensional disorder along the a 
direction, the scattered intensity falls off to zero, as 
in the case of ordered crystal when k or 1 (or both) 
depart  from integral values by 1/ng. and 1/na respec- 
tively, where nl, n~. and na are the numbers of unit  
cells along the a, b and c axes respectively (Wilson, 
1942). We are therefore interested in the values of Jm 
only at  points on the reciprocal lattice rods with k 
and 1 integral. Substituting the values of as and F ,  
in the above, we obtain the following expression for 
Jm at the reciprocal point (h+ w, k, l) where h, k, 1 
are integers and h + k + 1 is odd: 

Jra =A2 sin 2 ½z~w +B~'{(1- a) 2 cos 2 ½no 

+ a 2 sin 2 ½~}(1-2o¢) l~ml . (10)  

The above relation is derived for positive m, but  i t  
can be shown tha t  it  holds for negative values of m 
as well. The expression for the scattered intensity will 
then be (Wilson, 1942) 

J(h+ o~, k, l) = n~.nag 2 [A e sin ~. ½~o~ sin2sin ~~(h+~(h+°~)nlCo) 

+B~{(1- ~)~ cos~ ½ ~ +  ~ sin~ ½=~} 

] x Z ' ( n l - [ m l ) ( 1 - 2 a )  12ml exp [2~ima.s/2] (11) 

D i s c u s s i o n  

The term l (n l - ]m])(1-2a)  12ml exp [2zdma.s/2] in 
equation (11) reduces to 

sin2 [~(h + o)nl]/sin2 [~(h + ~)] 

for c¢=0 and unity, and becomes zero for c~=0-5. 
Therefore, the intensity expressions for these three 
special cases would be as follows: 

For 0¢=0, 
sin2 7~(h+ og)ni  

J ( h  + o~, k, l) = n 2 2 na 
sin 2 ~ (h+  w) 

× {A 2 sin 2 ½~w+B 2 cos 2 ½~09}. 

As expected, this reduces to n~n~n~lFx] 2 (=n~n~n~]F4i2) 
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at the reciprocal lattice points (i.e. co integral) and 
zero elsewhere (equations 7 & 8). This situation cor- 
responds to the ordered structure A1B1A1B1 . . .  (or 
A e B e A e B 2 . . . )  of space group Pbcn. 

:For ~=1 ,  

F ( h  + co, k, l) = n~n~ sm'~ /(h-~.T ~ )--)n, 1 (Ae+ B e) sin 21-~co. 
sm :~(t~ + co) 

2 2 2 ]F2] 2 ( = ^ . 2 _ 2 . 2  This reduces to nln~n3. 't~lnena. IF3] e) at the 
reciprocal lattice points with the sum of indices, even 
(i.e. o~ odd) and zero elsewhere (equations 7). This 
situation corresponds to the ordered structure A~B2 
A ~ B e . . .  (or A ~ B ~ A e B I . . . )  of space group Iba2. 

For ~--0.5, 

J ( h +  w, k, l) 2 2 sin2 re(h+ o~)nl. A2 sin2 ½7~co . 
-~  n 2 n a  sin e ~(h+ w) 

This reduces to _2.^2.^2 ]F~]2 ( = _ 2 ^ . 2 .  2 "lbl'lb2"lb 3 • lbl"lb2"lt 3 • ]F4] 2) a t  the 
reciprocal lattice points with the sum of indices even 
(i.e. co an odd integer) and zero elsewhere (equations 
7). This situation corresponds to the statistically or- 
dered structure (½A~½Ae)(1B~½Be)... of space group 
Ibam.  

When ~ differs from zero, 0.5 and unity by an 
amount ~ 1/nl, the intensity expression becomes 

sin 9 z(h + co)n1 
J ( h  + o~, k, l) = n~n~A 9" sin 9. ½xeo~ 

sine ~(h + co) 

+ nl n~n~B 2 {(1 - 2a)cos e ½:~co + c~ e } {1 - (1 -- 2a)4} 
1 _ 2 ( 1 _ 2 a ) 2  cos 2 ~  + (1_2a)4 • 

(12) 

In the above expression, one term whose value is in- 
appreciable for large values of nl has been left out. 
The first term in the above corresponds to the sharp 
reflexions in the X-ray photographs. These reflexions 
do not appear when the sum of the indices is odd 
(i.e. co even) because of the factor sin e ½7~o. When 
the sum of indices is even (i.e. co odd), A~=IF1] e 
(equations 7), so that  these reflexions appear with the 
same intensity and sharpness as from an ordered 
crystal. 

The second term in equation (12) corresponds to 
the diffuse reflexions in the X-ray photographs. The 
diffuse term is proportional to nl while the sharp term 
is proportional to n~. The diffuse reflexions, though 
weaker are not as faint as one would expect from the 
above expression. :For a comparison between the 
intensities of the sharp and the diffuse spots, the 
problem should, as mentioned by Jagodzinski (1949) 
be treated on the basis of the dynamical theory, un- 
less the sharp reflexions are themselves broadened 
owing to smallness of nl. 

The diffuse term can be written 

I d  - nln~n~BeQ , 
where 

Q = {(1-2a)cose  ½~o~+ ae}{1- (1-2a)4} 

1 - 2 ( 1 - 2 a )  2 cos2z~w+(1-2a)  4 " 

The plots of Q against w are shown in Fig. 3 for 
c~=0.1, 0"3, 0.7 and 0.9, respectively. The curves are 

3"0 ! 

t t0 / 

- 1 "0 - 0"5 0"5 1-0 

Fig. 3.  Q v e r s u s  ¢o curves for a = 0 " l ,  0.3, 0.7, and  0"9. 

symmetrical about ~o =0, and they have maxima at 
co=0 for a < 0 . 5  and at eo=l  for a>0-5 ;  in other 
words, for a < 0 . 5  the curves have maxima at the 
reciprocal lattice points with the sum of indices odd, 
while for a > 0.5, the maxima appear at the reciprocal 
lattice points with the sum of indices even. The curves 
go on becoming broader and lower as a approaches 
0.5, whereas they show pronounced maxima as a 
approaches zero or unity. Since the diffuse spots in 
the X-ray photographs show maxima near reciprocal 
lattice points with the sum of indices odd, it is clear 
that  a is close to zero (0.1 or so); this implies that  the 
structure is closer to the ordered structure of space 
group Pbcn than to the ordered structure of space 
group Iba2 ( a = l . 0 )  or to the statistically ordered 
structure of space group Ibam (a=0"5). 

A careful look at the photographs shows that  the 
diffuse spots have peaks which are often shifted 
slightly from the reciprocal lattice points. Thus, in 
Fig. 1, the diffuse reflexion (17, 0, 2) is closer to 
(18, 0, 2) than to (16, 0, 2) and the diffuse reflexion 
(21, 0, 2) is closer to (22, 0, 2) than to (20, 0, 2). This 
is obviously because the values of B 2 (equation 6) 
are not symmetrical about co---0 except for reflexions 
of the type 0kl. For such reflexions, the diffuse spots 
are expected to show two peaks symmetrically on 
either side of the reciprocal lattice points; however, 
being too close, these peaks would merge into a broad 
maxima, symmetrical about the reciprocal lattice 
point. As expected, the strong diffuse spot (021) in 
Fig. 2 shows a broad maximum, symmetrical about 
the reciprocal lattice point. 

I t  is thus clear that  the postulated disorder explains 
the observed pattern of sharp and diffuse reflexions 
qualitatively. This sort of disorder appears reason- 
able from geometrical considerations as well, be- 
cause the van der Waals contacts linking the methyl 
groups of the neighbouring layers of type A1 and B 2 
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respectively are normal. These contacts are as fol- 
lows : 

C(x, y, z)-C(~, ~, z) 4.02 A 
C(x, y, z)-C(~,  1 - y ,  z) 4.29 
C(x, y, z ) -  C(~, y, z -  ½) 4-12 
C(x,y,z)-C(5,  y,z+½) 4.12 

The structure analysis has been only recently com- 
pleted, and it has therefore not yet been possible to 
compare quantitatively the observed and calculated 
intensities along the reciprocal lattice rods (h + w,/c, 1). 

Such a comparison and a proper estimate of c~ will be 
published later. 
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The structures of three halogen-derivatives of o-nitrobenzaldehyde have been partially determined 
in their short-axis projections while the structure of o-nitrobenzaldehyde itself has been analysed 
from partial three-dimensional data. Molecular distortions due to the proximity of the bulky ortho 
substituents are discussed and compared with the corresponding effects in o-chloro- and o-bromo- 
benzoic acid. 

The X-ray determination is to be supplemented by a neutron-diffraction analysis. 

Introduction 

The structure analyses of o-nitrobenzaldehydes re- 
ported ill this paper form part of a research program 
on the chemistry of the solid state. One of us has 
pointed out elsewhere (Schmidt, 1957) that  the aim 
of our combined X-ray and physico-chemical studies 
is the analysis of reaction mechanisms in terms of 
topochomical factors controlling solid-state reactions. 
The reaction type analysed here is the photochemical 
reaction of the system I -+  II  such as o-nitrobenzal- 
dehyde to o-nitrosobenzoic acid (Ciamician & Silber, 
1901; Leighton & Lucy, 1934). 

CH< -. ~/C(OH)< 

0~. V\NO 
(i) (Ii) 

To this end partial crystal-structure analyses of 
substituted o-nitrobenzaldehydes were undertaken in 
parallel with kinetic work (Cohen & Schmidt, un- 
published). When this system was first being studied 
in 1951 we attempted to correlate reaction rates in 
the solid state with the distances between the reacting 
centres (Ctt and NO) in o-nitrobenzaldehyde, and its 

4-iodo-, 5-bromo-, and 6-chloro derivatives. However, 
this approach had to be abandoned mainly because 
of the difficulty of establishing reproducible rates 
in the solid-state reaction. Parallel work on both the 
light-sensitive and the light-stable modifications of 
p-nitrophenol (Coppens & Schmidt, to be published) 
indicated that  the geometry of the reacting centres 
rather than their distances was the controlling factor 
in the oxygen transfer reaction. Accordingly it be- 
came of interest to investigate the detailed structure of 
o-nitrobenzaldehydes; for the obvious reason the 
unsubstituted derivative was chosen for a three- 
dimensional X-ray analysis. One of us has followed 
up this work with a two-dimensional neutron-diffrac- 
tion analysis (Coppens, 1964). No further X-ray work 
is contemplated on the three halogen derivatives. 

Halogen derivatives  

5-Bromo-2-nitrobenzaldehyde was prepared according 
to Einhorn & Gernsheim (1895). I t  crystallizes from 
aqueous ethanol in long colourless needles elongated 
along [010]. The crystallographic constants are listed 
in Table 1. The hO1 intensities were estimated visually 
from Weissenberg photographs by means of the 
multiple-film technique. The Patterson projection 


